The Limits of a Chebyshev-Type Theory of Restricted Range Approximation

YINGGUANG SHI

Computing Center, Chinese Academy of Sciences, P.O. Box 2719, Beijing, People's Republic of China

Communicated by T. J. Rivlin

Received November 14, 1985; revised March 10, 1986

The Chebyshev-type theory of restricted range approximation includes existence, alternation, characterization, and uniqueness. In this paper a detailed study is made of the limits of this theory. © 1988 Academic Press, Inc.

I. INTRODUCTION

Consider extended real-valued function l(x), u(x) on $X \equiv [0, 1]$ subject to the following restrictions:

- (i) $-\infty \leq l(x) < u(x) \leq +\infty$ for all $x \in X$;
- (ii) l and u are upper and lower semicontinuous on X, respectively.

Let *H* be an *n*-dimensional subspace of C(X) with the Chebyshev norm and set $K = \{q \in H: l \leq q \leq u\}$. The problem of restricted range approximation is, given $f \in C(X)$, to find a function $p \in K$ such that

$$||f-p|| = \inf_{q \in K} ||f-q||.$$

Such a function p is said to be a best approximation to f from K.

Many authors [1, 2] have studied this problem and have obtained a Chebyshev-type theory including existence, characterization, and uniqueness. In what follows we shall briefly describe this theory. To this end we introduce some notation.

Given $f \in C(X)$ and $p \in K$, denote

$$X_{+1} = \{x \in X: f(x) - p(x) = ||f - p||\},\$$

$$X_{-1} = \{x \in X: f(x) - p(x) = -||f - p||\},\$$

$$X_{+2} = \{x \in X: p(x) = l(x)\},\$$

0021-9045/88 \$3.00 Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved.

$$X_{-2} = \{x \in X: p(x) = u(x)\},\$$

$$X_{+} = X_{+1} \cup X_{+2},\$$

$$X_{-} = X_{-1} \cup X_{-2},\$$

$$X_{p} = X_{+} \cup X_{-};\$$

$$s(x) = \begin{cases} 1, & x \in X_{+} \\ -1, & x \in X_{-} \end{cases} \text{ when } X_{+} \cap X_{-} = \emptyset;\$$

f-p is said to alternate k times on X if there are k+1 points

$$0 \leqslant x_1 < x_2 < \dots < x_{k+1} \leqslant 1 \tag{1}$$

in X_p such that the x_i 's alternately belong to X_+ and X_- . When $X_+ \cap X_- = \emptyset$ this can be expressed as

$$s(x_{i+1}) = -s(x_i), \quad i = 1, ..., k.$$

The main points of the Chebyshev-type theory of restricted range approximation are summarized in the following theorem; here $\tilde{C}(X) = \{f \in C(X) : l \leq f \leq u\}$.

THEOREM A. Let H be a Haar subspace. Then

(a) For every $f \in C(X)$, f possesses a best approximation from K;

(b) For every $f \in C(X)$, a necessary and subbicient condition that $p \in K$ be a best approximation of f from K is that either $X_+ \cap X_- \neq \emptyset$ or f - p alternate at least n times on X, especially

(\tilde{b}) For every $f \in \tilde{C}(X)$, a necessary and sufficient condition that $p \in K$ be a best approximation to f from K is that f - p alternate at least n times on X;

(c) For every $f \in C(X)$, if $X_+ \cap X_- = \emptyset$ for a best approximation to f then the best approximation to f from K is unique, especially

(c) For every $f \in \tilde{C}(X)$, the best approximation to f from K is unique.

Remark. The restrictions on l and u are somewhat more relaxed than ones in [1]. But it is easy to see that the theory with these constraints is the same as developed in [1].

In [3, p. 80] a detailed study was made of the limits of a Chebyshev-type theory of approximation without constraints. The purpose of this paper is to consider the limits of a Chebyshev-type theory for restricted range approximation.

In order to state our problems precisely we need

DEFINITION 1. K has Property C (resp. Property \tilde{C}) if for every function $f \in C(X)$ (resp. $f \in \tilde{C}(X)$), a necessary and sufficient condition that $p \in K$ be a best approximation to f from K is that f - p alternate at least n times on X.

DEFINITION 2. K has Property C^* (resp. Property \tilde{C}^*) if for every function $f \in C(X)$ (resp. $f \in \tilde{C}(X)$), a necessary and sufficient condition that $p \in K$ be a best approximation of f from K is that either $X_+ \cap X_- \neq \emptyset$ or f - p alternate at least n times on X.

DEFINITION 3. K has Property U (resp. Property \tilde{U}) if for every function $f \in C(X)$ (resp. $f \in \tilde{C}(X)$), the best approximation to f from K is unique.

Our problems are as follows (X & Y means "both X and Y").

1. What conditions on K are necessary and sufficient for K to have each of Property C, Property \tilde{C} , Property C*, and Property \tilde{C}^* ?

2. What conditions on K are necessary and sufficient for K to have each of Property C & U, Property \tilde{C} & \tilde{U} , Property C^* & U, and Property \tilde{C}^* & \tilde{U} ?

3. What conditions on K are necessary and sufficient for K to have each of Property U and Property \tilde{U} ?

We will give a complete answer to each of the above problems. The results for Problems 1, 2, and 3 are given in Sections II, III, and IV, respectively. The last section, Section V, is devoted to summarizing all these results.

II. THE LIMITS OF A CHEBYSHEV-TYPE THEORY-CHARACTERIZATION

The following is from [3, p. 71].

DEFINITION 4. K is said to have Property Z (of degree n) if $p_1, p_2 \in K$, $p_1 \neq p_2$, implies that $p_1(x) - p_2(x)$ has at most n-1 zeros in X. We need two lemmas for establishing the first main result.

LEMMA 1. If K has Property \tilde{C} , then K has Property Z of degree n.

Proof. The proof is similar to that of Lemma 3-10 in [3] with the modified definition of f such that $f \in \tilde{C}(X)$:

$$f(x) = \begin{cases} x \in [x_j + \delta, x_{j+1} - \delta], & j = 2, 3, ..., n \\ M(x) & x \in [0, x_1 - \delta] & \text{if } x_1 > 0 \\ x \in [x_{n+1} + \delta, 1] & \text{if } x_{n+1} < 1 \\ \min\{p_1(x_j) + \frac{3}{2}\eta, u(x_j)\}, & x = x_j, j \text{ odd}, 1 \le j \le n+1 \\ \max\{p_1(x_j) - \frac{3}{2}\eta, l(x_j)\}, & x = x_j, j \text{ even}, 1 \le j \le n+1 \end{cases}$$

In the remaining subintervals of [0, 1], f(x) is defined so that $f \in \tilde{C}(X)$ and

$$|p_1(x) - f(x)| < \frac{3}{2}\eta, \qquad |p_2(x) - f(x)| < \frac{3}{2}\eta.$$

LEMMA 2. If K has Property Z and K contains an interior point, i.e., a point p satisfying l , then H is a Haar subspace.

Proof. It is easy to see that if K contains an interior point then K must contain an *n*-dimensional neighborhood of this point. Thus by Lemma 3-14 in [3] it follows that H is a Haar subspace.

In order to state our main theorem we need the following

DEFINITION 5. $p \in K$ is said to alternate k times with respect to (l, u) on X if there are k + 1 points (1) in X such that

either
$$p(x_j) = \begin{cases} l(x_j), j \text{ odd} \\ u(x_j), j \text{ even} \end{cases}$$
 or $p(x_j) = \begin{cases} l(x_j), j \text{ even} \\ u(x_j), j \text{ odd.} \end{cases}$ (2)

DEFINITION 6. K is said to be an alternation singleton if K contains only one element and this element alternates at least n times with respect to (l, u) on X.

The first main result is

THEOREM 1. K has Property \tilde{C} if and only if either K is an alternation singleton or H is a Haar subspace.

Proof. The "if" portion of this theorem follows directly from Theorem $A(\tilde{b})$. We proceed with the "only if" portion.

Let $p \in K$. There are two cases to be discussed.

Case 1. p alternates at least n times with respect to (l, u). Then K is a singleton and is, indeed, an alternation singleton. In fact, assume $q \in K$, $q \neq p$. Then there exist n + 1 points

$$0 \leq x_1 < x_2 < \cdots < x_{n+1} \leq 1$$

such that either

$$(-1)^{j}(p(x_{j})-q(x_{j})) \ge 0, \qquad j=1, 2, ..., n+1$$

or

$$(-1)^{j+1}(p(x_j)-q(x_j)) \ge 0, \qquad j=1, 2, ..., n+1,$$

each of which implies that p-q has at least *n* zeros by the Assertion in [3, p. 61]. This is a contradiction, because by Lemma 1, K has Property Z.

Case 2. p alternates exactly k times with respect to (l, u), k < n. By Lemma 1 and Lemma 2 it suffices to show that K contains an interior point.

The interval [0, 1] may be divided into k + 1 subintervals by

$$0 = x_0 < x_1 < \cdots < x_k < x_{k+1} = 1$$

so that either

or

is alternately valid on the subinterval $[x_j, x_{j+1}]$, j = 0, 1, ..., k. For concreteness, assume that

$$p(x) > l(x), \qquad x \in [x_j, x_{j+1}], j \text{ even}, \ 0 \le j \le k$$

$$p(x) < u(x), \qquad x \in [x_j, x_{j+1}], j \text{ odd}, \ 0 \le j \le k.$$
(3)

Take t > 0 small enough so that

$$e_0 = \min\{p(x) - l(x), u(x) - p(x): x \in Y_j \equiv [x_j - t, x_j + t], \\ j = 1, ..., k\} > 0.$$

Denote $X_0 = [x_0, x_1 - t], X_j = [x_j + t, x_{j+1} - t], j = 1, ..., k - 1, X_k = [x_k + t, x_{k+1}]$. Let

$$e_1 = \min\{p(x) - l(x): x \in X_j, j \text{ even, } 0 \le j \le k\},\$$
$$e_2 = \min\{u(x) - p(x): x \in X_j, j \text{ odd, } 0 \le j \le k\},\$$

and

$$e = \frac{1}{2} \min\{e_0, e_1, e_2\}.$$

A function $f \in C(X)$ is defined as

$$f(x) = p(x) - (-1)^{j} e, \qquad x \in X_{j}, \quad j = 0, 1, ..., k.$$
(4)

In each subinterval Y_j , j = 1, 2, ..., k, f(x) intersects p(x) only once and satisfies

$$|p(x) - f(x)| \le e. \tag{5}$$

Let us examine that $f \in \tilde{C}(X)$. For $x \in Y_j$, j = 1, 2, ..., k, it follows from (5) that

$$f(x) \le p(x) + e \le p(x) + e_0 \le p(x) + u(x) - p(x) = u(x)$$

and

$$f(x) \ge p(x) - e \ge p(x) - e_0 \ge p(x) + l(x) - p(x) = l(x).$$

And for $x \in X_i$, j even,

$$f(x) = p(x) - e \le p(x) \le u(x)$$

and

$$f(x) = p(x) - e \ge p(x) - e_1 \ge p(x) + l(x) - p(x) = l(x).$$

The same conclusion is valid for $x \in X_j$, j odd.

Since f - p alternates exactly k times, k < n, by the assumption of the theorem, p is not a best approximation to f from K. Hence there is a function $p^* \in K$ such that p^* is a better approximation to f than p, i.e.,

$$||f - p^*|| < ||f - p|| = e.$$
 (6)

We claim that

$$l < p^* < u. \tag{7}$$

In fact, it follows from (6) that $f - e < p^* < f + e$. Hence for $x \in X_j$, j even, we have f(x) = p(x) - e. Whence

$$p^*(x) < f(x) + e = p(x) \le u(x)$$

and

$$p^{*}(x) > f(x) - e = p(x) - 2e \ge p(x) - e_{1}$$
$$\ge p(x) - (p(x) - l(x)) = l(x).$$

A similar argument is applicable to $x \in X_j$, j odd.

46

Further, for $x \in Y_j$, j = 1, ..., k, we obtain that

$$p^{*}(x) < f(x) + e \le p(x) + 2e \le p(x) + e_{0} \le p(x) + u(x) - p(x) = u(x)$$

and

$$p^{*}(x) > f(x) - e \ge p(x) - 2e \ge p(x) - e_0 \ge p(x) - (p(x) - l(x)) = l(x).$$

This proves that $l < p^* < u$ and concludes the proof of the theorem.

DEFINITION 7. K is said to have Property B_1 if n > 1 implies K = H, and n = 1 and $l(x) \neq -\infty$ (resp. $u(x) \neq +\infty$) imply the existence of two distinct points x_1, x_2 and a function $p_0 \in K$ satisfying

$$p_0(x_i) = l(x_i)$$
 (resp. $u(x_i)$), $i = 1, 2.$ (8)

The next main result is

THEOREM 2. K has Property C if and only if either K is an alternation singleton or H is a Haar subspace and K has Property B_1 .

Proof. Sufficiency. It is easy to see that if K is an alternation singleton or K = H is a Haar subspace, then K has Property C. So we need only to show that if H is a Haar subspace and K satisfies Property B_1 for n = 1, then K has Property C.

If $X_{+} \cap X_{-} = \emptyset$, by Theorem A, Property C is valid.

On the other hand, $X_+ \cap X_- \neq \emptyset$ means that one of the following three cases occurs.

Case 1. $X_{+1} \cap X_{-1} \neq \emptyset$. This means $f \in K$. A set of any two distinct points provides an alternation once.

Case 2. $X_{-1} \cap X_{+2} \neq \emptyset$. That implies $l(x) \neq -\infty$. Let $x_0 \in X_{-1} \cap X_{+2}$. Then

$$p(x_0) - f(x_0) = ||f - p||$$
 and $p(x_0) = l(x_0)$, (9)

where $p \in K$ is a best approximation to f. Since H is a Haar subspace, it follows from $p(x_0) = l(x_0)$ and (8) that $p = p_0$. Thus f - p alternates at least once, since $x_0 \in X_+$ and $x_1, x_2 \in X_-$.

Case 3. $X_{+1} \cap X_{-2} \neq \emptyset$. A similar argument is valid for this case.

Necessity. Assume that K is not an alternation singleton. By Theorem 1, H is a Haar subspace.

Let n = 1. The proof is given for $l(w) \neq -\infty$. A similar proof is valid for $u(x) \neq +\infty$. Since $l(x) \neq -\infty$ and l is upper semicontinuous, there is a

YINGGUANG SHI

function $p_0 \in K$ such that $p_0(x_1) = l(x_1)$ for some x_1 . Since K is not an alternation singleton, $p_0(x) < u(x)$ for all $x \in X$. Suppose on the contrary that $p_0(x) \neq l(x)$ for any $x \neq x_1$. Then the function

$$f(x) = p_0(x) + |x - x_1| - 1, \qquad x \in X$$
(10)

has the properties

$$|f(x_1) - p_0(x_1)| = ||f - p_0||$$
 and $|f(x) - p_0(x)| < ||f - p_0||, \quad x \neq x_1.$

(11)

Since $x_1 \in X_{-1} \cap X_{+2}$, by Theorem A, p_0 is a best approximation to f from K. On the other hand, $f - p_0$ has no alternation, a contradiction. This concludes Property B_1 for n = 1.

Let n > 1. Suppose on the contrary that $l(x) \neq -\infty$. By the proof of Theorem 1 there is a function $p^* \in K$ such that $p^*(x) < u(x)$ for all $x \in X$. Then there exists a function $p_0 \in K$ such that

$$p_0(x) < u(x) \qquad \text{for all } x \in X$$
$$p_0(x_1) = l(x_1) \qquad \text{for some } x_1 \in X$$

In fact, p_0 is a solution of the minimization problem

$$\inf_{x \in X} (p_0(x) - l(x)) = \inf_{q \in K_1} \inf_{x \in X} (q(x) - l(x))$$

in $K_1 = \{q \in K: l \leq q \leq p^*\}$ and always exists. Without loss of generality assume that x_1 satisfies that $p_0(x) \neq l(x)$ for all $x < x_1$, otherwise we replace x_1 by a point satisfying this condition. Then the function f defined by (10) satisfies (11) and has p_0 as a best approximation. But $f - p_0$ alternates at most once, which contradicts Property C and n > 1. This proves $l = -\infty$. Similarly, we must have $u = +\infty$.

THEOREM 3. K has Property \tilde{C}^* if and only if either K is an alternation singleton or H is a Haar subspace.

Proof. It suffices to show that Property \tilde{C}^* is equivalent to Property \tilde{C} . Clearly, Property \tilde{C} implies Property \tilde{C}^* . On the other hand, since u > l implies that either $f \in K$ or $X_+ \cap X_- = \emptyset$, Property \tilde{C}^* implies Property \tilde{C} .

THEOREM 4. K has Property C^* if and only if either K is an alternation singlton or H is a Haar subspace.

Proof. Since Property C^* implies Property \tilde{C}^* , by Theorem 3, Property

 C^* implies Property \tilde{C} . Conversely, the "if" portion of the theorem follows directly from Theorem A.

III. THE LIMITS OF A CHEBYSHEV-TYPE THEORY— CHARACTERIZATION AND UNIQUENESS

If follows immediately from Theorems 1 and 2 that

LEMMA 3. (a) Property \tilde{C} implies Property \tilde{U} . (b) Property C implies Property U.

By Theorems 1, 2, and 3 and Lemma 3 we can easily obtain the following three theorems.

THEOREM 5. K has Property $\tilde{C}\&\tilde{U}$ if and only if either K is an alternation singleton or H is a Haar subspace.

THEOREM 6. K has Property C&U if and only if either K is an alternation singleton or H is a Haar subspace and K has Property B_1 .

THEOREM 7. K has Property $\tilde{C}\&\tilde{U}$ if and only if either K is an alternation singleton or H is a Haar subspace.

The next theorem, which characterizes Property $C^*\&U$, is somewhat difficult. We begin with

DEFINITION 8. K has Property B_2 if either $l = -\infty$ (resp. $u = +\infty$) or $p_1, p_2 \in K$ and $p_1(x_0) = p_2(x_0) = l(x_0)$ (resp. $u(x_0)$) imply $p_1 = p_2$.

EXAMPLE. If $l = (\frac{1}{4} - (x - \frac{1}{2})^2)^{1/2}$, $u = +\infty$ and $H = \text{span}\{1, x\}$, it is easy to see that K satisfies Property B_2 .

LEMMA 4. Property U implies Property B_2 .

Proof. If possible, suppose that K does not have Property B_2 , and say that $p_1(x_0) = p_2(x_0) = l(x_0)$ for some $p_1, p_2 \in K$, $p_1 \neq p_2$, and $x_0 \in X$. Denote $d = ||p_1 - p_2||$ and define $f \in C(X)$ by

$$f(x_0) = l(x_0) - d,$$

$$|f(x) - p_i(x)| < d, \qquad x \neq x_0, \quad i = 1, 2$$

Obviously both p_1 and p_2 are best approximations to f from K by definition. But this contradicts Property U. The lemma is established.

THEOREM 8. K has Property $C^*\&U$ if and only if either K is an alternation singleton or H is a Haar subspace and K has Property B_2 .

Proof. (\Leftarrow) if K is an alternation singleton, clearly the conclusion is right. If H is a Haar subspaces, by Theorem A, K has Property C* and the uniqueness is valid for those $f \in C(X)$ for which $X_+ \cap X_- = \emptyset$. Assume that $f \in C(X)$ has a best approximation p and $X_+ \cap X_- \neq \emptyset$, say $x_0 \in X_+ \cap X_-$. Then one of the following three cases occurs:

(1) $x_0 \in X_{+1} \cap X_{-1}$; (2) $x_0 \in X_{-1} \cap X_{+2}$; (3) $x_0 \in X_{+1} \cap X_{-2}$.

Case (1) means $f \in K$ and is trivial. Case (2) means (9). Thus if $p^* \in K$ is also a best approximation to f, then

$$p^*(x_0) - f(x_0) \leq ||f - p||$$

and

$$p^*(x_0) \ge l(x_0).$$

By (9) we obtain $p(x_0) = p^*(x_0) = l(x_0)$. By virtue of Property B_2 we conclude $p = p^*$, which shows that the best approximation p to f is unique. A similar argument may establish the uniqueness of best approximation for case (3).

 (\Rightarrow) If K is not an alternation singleton, by Theorem 4, H is a Haar subspace. Also, by Lemma 4, K has Property B_2 .

IV. THE LIMITS OF A CHEBYSHEV-TYPE THEORY—UNIQUENESS

For preparation for the proof of Theorem 9, we establish

LEMMA 5. If K is not a singleton, then Property B_2 and Property Z imply that H is a Haar subspace.

Proof. Let p_1 and p_2 be in K and $p_1 \neq p_2$. Then $p = \frac{1}{2}(p_1 + p_2)$ must satisfy that l(x) < p(x) < u(x) for all $x \in X$, because $p(x_0) = l(x_0)$ and $p(x_0) = u(x_0)$ lead to $p_1(x_0) = p_2(x_0) = l(x_0)$ and $p_1(x_0) = p_2(x_0) = u(x_0)$, respectively, contradicting Property B_2 . If it is coupled with Property Z, then by Lemma 2 we assert that H is a Haar subspace.

The first main theorem in this section is as follows.

THEOREM 9. K has Property U if and only if either K is a singleton or H is a Haar subspace and K has Property B_2 .

Proof. The "if" portion of the theorem follows directly from Theorem 8. We proceed with the "only if" portion.

By Lemma 3-13 in [3, p. 87], Property U implies Property Z. Lemma 4 says that Property U implies Property B_2 . Thus by Lemma 5, H is a Haar subspace if K is not a singleton.

The last main theorem in this section is concerned with the equivalent condition of Propety \tilde{U} . For this theorem we need to establish a lemma, which is of independent interest.

LEMMA 6. Property \tilde{U} implies Property Z.

Proof. Suppose on the contrary that there are $p_1, p_2 \in K$ with $p_1 \neq p_2$ such that $p_1 - p_2$ has *n* distinct zeros, say $x_1, x_2, ..., x_n$. Without loss of generality we assume that $e \equiv \frac{1}{2} ||p_1 - p_2|| < \frac{1}{4} \inf\{u(x) - l(x): x \in X\}$, otherwise we replace p_1 and p_2 by $(1 - t_1)p_1 + t_1p_2$ and $(1 - t_2)p_1 + t_2p_2$, respectively, with $t_1 \neq t_2$ and $|t_1 - t_2|$ small enough. Define $g \in C(X)$ such that

$$l + e \leqslant g \leqslant u - e \tag{12}$$

and

$$\|g - p_1\| = \|g - p_2\| = e.$$
(13)

Such a function g must exist. In fact, (13) is equivalent to

$$p_1 - e \leq g \leq p_1 + e$$
 and $p_2 - e \leq g \leq p_2 + e$.

Thus it suffices to define $g \in C(X)$ satisfying $l^* \leq g \leq u^*$, where $l^* = \max\{p_1 - e, p_2 - e, l + e\}$ and $u^* = \min\{p_1 + e, p_2 + e, u - e\}$. But $l^* \leq u^*$ is, indeed, valid, because if follows from

$$\max\{p_1, p_2\} - e \leq \min\{p_1, p_2\} + e, \qquad \max\{p_1, p_2\} - e \leq u - e, \\ l + e \leq u - e \qquad \text{and} \qquad l + e \leq \min\{p_1, p_2\} + e.$$
(14)

Since l^* and u^* are upper and lower semicontinuous, respectively, there exists a function $g \in C(X)$ such that $l^* \leq g \leq u^*$. By uniqueness it follows from (13) that neither p_1 nor p_2 is a best approximation to g from K. Therefore there must exist a function p in K such that p is a better approximation to g than p_1 , i.e., $||g - p|| < ||g - p_1|| = e$. According to (12) we get that $l . Write <math>p_i^* = \frac{1}{2}(p + p_i)$, i = 1, 2. Whence

$$l < p_i^* < u, \qquad i = 1, 2$$
 (15)

and $p_1^* - p_2^* = \frac{1}{2}(p_1 - p_2)$ also has *n* zeros $x_1, x_2, ..., x_n$. Without loss of generality we further assume that

$$M \equiv \|p_1^* - p_2^*\| < \min_{i=1,2} \inf_{x \in X} \{u(x) - p_i^*(x), p_i^*(x) - l(x)\}$$
(16)

using the techniques as before.

Now we can use a similar argument, as used in the proof of Lemma 3-13 in [3] by Rice, where f(x) may be chosen so that $f \in \tilde{C}(X)$ because of (15) and (16). Therefore both p_1^* and p_2^* are best approximations to f from K. This contradiction proves Property Z.

THEOREM 10. K has Property \tilde{U} if and only if either K is a singleton or H is a Haar subspace.

Proof. The "if" portion of the theorem is given by Theorem A. For the "only if" portion we see from Lemma 6 that K has Property Z. If K is not a singleton, Property Z as well as (15) implies that H is a Haar subspace by Lemma 2.

V. SUMMARY

Theorems 1, 3, 4, 5, and 7 can be restated as follows.

THEOREM 11. The following statements are equivalent to each other:

- (a) Either K is an alternation singleton or H is a Haar subspace;
- (b) K has Property \tilde{C} ;
- (c) K has Property \tilde{C}^* ;
- (d) K has Property C*;
- (e) K has Property $\tilde{C}\&\tilde{U}$;
- (f) K has Property $\tilde{C}^* \& \tilde{U}$.

Theorems 2 and 6 can be restated as follows.

THEOREM 12. The following statement are equivalent to each other:

(a) Either K is an alternation singleton or H is a Haar subspace and K has Property B_1 ;

- (b) K has Property C;
- (c) K has Property C&U.

From Theorems 1, 3, 4, 5, 7, and 10 we have

THEOREM 13. If K is not a singleton, then the following statements are equivalent to each other:

- (a) *H* is a Haar subspace;
- (b) K has Property \tilde{C} ;
- (c) K has Property \tilde{C}^* ;
- (d) K has Property C*;
- (e) K has Property \tilde{U} ;
- (f) K has Property $\tilde{C}\&\tilde{U}$;
- (g) K has Property $\tilde{C}^* \& \tilde{U}$.

From Theorems 8 and 9 we have

THEOREM 14. If K is not a singleton, then the following statements are equivalent to each other:

- (a) H is a Haar subspace and K has Property B_2 ;
- (b) K has Property U;
- (c) K has Property $C^*\&U$.

REFERENCES

- 1. G. D. TAYLOR, Approximation by functions having restricted ranges, III, J. Math. Anal. Appl. 27 (1969), 241-248.
- B. L. CHALMERS AND G. D. TAYLOR, Uniform approximation with constraints, Jahresber. Deutsch. Math.-Verein. 81 (1979), 49-86.
- 3. J. R. RICE, "The Approximation of Functions," Vol. 1, Addison-Wesley, Reading, MA/Palo Alto, CA/London, 1964.