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The Chebyshev-type theory of restricted range approximation includes existence,
alternation, characterization, and uniqueness. In this paper a detailed study is made
of the limits of this theory. !i;) 1988 Academic Press. Inc.

I. INTRODUCTION

Consider extended real-valued function l(x), u(x) on X= [0,1] subject
to the following restrictions:

(i) -00 ~l(x)<u(x)~ +00 for all XEX;

(ii) I and u are upper and lower semicontinuous on X, respectively.

Let H be an n-dimensional subspace of C(X) with the Chebyshev norm
and set K = {q E H: I ~ q ~ u }. The problem of restricted range
approximation is, given IE C(X), to find a function p EK such that

III - pll = inf III - qll·
qEK

Such a function p is said to be a best approximation to I from K.
Many authors [1,2] have studied this problem and have obtained a

Chebyshev-type theory including existence, characterization, and uni­
queness. In what follows we shall briefly describe this theory. To this end
we introduce some notation.

Given IE C(X) and p E K, denote

X +1 = {xEX:/(x)- p(x) = III - pll},

X -I = {XEX:j(X)- p(x) = -III - pll},

X +2 = {XE X: p(x) = l(x)},
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X -2 = {XE X: p(X) = U(X)},

X+=X+ 1 UX+ 2 ,

X_=X_ 1 UX_ 2 ,

Xp=X+ uX_;

{
I,

s(x)= -1,
XEX+

XEX
when X+ nX_ =0;

f - p is said to alternate k times on X if there are k + 1 points

(1)

in Xp such that the x/s alternately belong to X + and X _. When
X + n X _ = 0 this can be expressed as

i= 1,..., k.

The main points of the Chebyshev-type theory of restricted range
approximation are summarized in the following theorem; here C(X) =
{fEC(X): I~f~u}.

THEOREM A. Let H be a Haar subspace. Then

(a) For every f E C(X), f possesses a best approximation from K;

(b) For every f E C(X), a necessary and subbicient condition that p E K
be a best approximation of f from K is that either X + n X _ =I 0 or f - p
alternate at least n times on X, especially

(6) For every f E C(X), a necessary and sufficient condition that p E K
be a best approximation to f from K is that f - p alternate at least n times
on X;

(c) For every f E C(X), if X + n X _ = 0 for a best approximation to
f then the best approximation to f from K is unique, especially

(c) For every f E C(X), the best approximation to f from K is unique.

Remark. The restrictions on I and u are somewhat more relaxed than
ones in [1]. But it is easy to see that the theory with these constraints is
the same as developed in [1].

In [3, p. 80] a detailed study was made of the limits of a Chebyshev-type
theory of approximation without constraints. The purpose of this paper is
to consider the limits of a Chebyshev-type theory for restricted range
approximation.

In order to state our problems precisely we need
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DEFINITION 1. K has Property C (resp. Property C) if for every
function IE C(X) (resp. IE C(X)), a necessary and sufficient condition that
P E K be a best approximation to I from K is that 1- P alternate at least n
times on X.

DEFINITION 2. K has Property C* (resp. Property C*) if for every
function IE C(X) (resp. IE C(X)), a necessary and sufficient condition that
P E K be a best approximation of I from K is that either X + () X _ =I 0 or
I - P alternate at least n times on X.

DEFINITION 3. K has Property U (resp. Property 0) if for every
function IE C(X) (resp. IE C(X)), the best approximation to I from K is
unique.

Our problems are as follows (X & Y means "both X and y").

1. What conditions on K are necessary and sufficient for K to have
each of Property C, Property C, Property C*, and Property C*?

2. What conditions on K are necessary and sufficient for K to have
each of Property C & U, Property C& 0, Property C* & U, and Property
C* & O?

3. What conditions on K are necessary and sufficient for K to have
each of Property U and Property O?

We will give a complete answer to each of the above problems. The.
results for Problems 1, 2, and 3 are given in Sections II, III, and IV, respec­
tively. The last section, Section V, is devoted to summarizing all these
results.

II. THE LIMITS OF A CHEBYSHEv-TYPE THEORy-CHARACTERIZATION

The following is from [3, p. 71].

DEFINITION 4. K is said to have Property Z (of degree n) if PI' P2 E K,
PI =I Pl' implies that PI(X) - P2(X) has at most n -1 zeros in X.

We need two lemmas for establishing the first main result.

LEMMA 1. If K has Property C, then K has Property Z 01 degree n.

Proof The proof is similar to that of Lemma 3-10 in [3] with the
modified definition of I such that IE C(X):
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XE[Xj+b,Xj+1-b], j=2,3, ...,n

M(x) XE[0,x1-b] ifx1>0

f(x)= XE[X n +1 +b,l] ifxn + 1 <1

min{Pl(x)+~ll,u(xJ}, x=x j ' jodd, 1~j~n+ 1
max{Pl(xj ) - ~1l, I(xi )}, x = xj, j even, 1~j ~ n + 1.

In the remaining subintervals of [0, 1], f(x) is defined so that f E C(X)
and

LEMMA 2. If K has Property Z and K contains an interior point, i.e., a
point p satisfying 1< p < u, then H is a Haar subspace.

Proof It is easy to see that if K contains an interior point then K must
contain an n-dimensional neighborhood of this point. Thus by Lemma
3-14 in [3] it follows that H is a Haar subspace.

In order to state our main theorem we need the following

DEFINITION 5. P E K is said to alternate k times with respect to (I, u) on
X if there are k + 1 points (1) in X such that

. h ) {/(X i ), j oddelt er p(x =
} u(xj),jeven

( {
/(Xj), j even

or p x) =
} u(xi ), j odd.

(2)

DEFINITION 6. K is said to be an alternation singleton if K contains
only one element and this element alternates at least n times with respect to
(I, u) on X.

The first main result is

THEOREM 1. K has Property C if and only if either K is an alternation
singleton or H is a Haar subspace.

Proof The "if" portion of this theorem follows directly from
Theorem A(b). We proceed with the "only if" portion.

Let p E K. There are two cases to be discussed.

Case 1. p alternates at least n times with respect to (t, u). Then K is a
singleton and is, indeed, an alternation singleton. In fact, assume q E K,
q i= p. Then there exist n + 1 points
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such that either

45

or

(-1)1+ l(p(X/) - q(x)) ~ 0,

j = 1, 2, ..., n + 1

j = I, 2, """, n + 1,

each of which implies that p - q has at least n zeros by the Assertion in
[3, p. 61]. This is a contradiction, because by Lemma 1, K has Property Z.

Case 2. p alternates exactly k times with respect to (l, u), k < n. By
Lemma 1 and Lemma 2 it suffices to show that K contains an interior
point.

The interval [0, 1] may be divided into k + 1 subintervals by

so that either

p(x) > I(x)

or

p(x) < u(x)

is alternately valid on the subinterval [Xi' Xi + 1]' j = 0, I, ... , k. For con­
creteness, assume that

p(x»/(x), XE[Xi,Xj+1],jeven, O~j~k

p(x) < u(x), X E [xi' x;+,], j odd, 0 ~j ~ k.

Take t > 0 small enough so that

eo = min{ p(x) -/(x), u(x) - p(x): XE Y; == [xi - t, x
J
+ t],

j = 1, ..., k} > O.

(3 )

Denote Xo=[xo,x1-t], Xj=[xj+t,xi+,-t], j=I, ...,k-l, Xk =
[xk + t, Xk+ 1]. Let

e 1 = min{ p(x) -I(x): x E Xi' j even, 0 ~j ~ k},

e2 = min{ u(x) - p(x): XE Xi' j odd, 0 ~j~ k},

and



46 YINGGUANG SHI

A function f E C( X) is defined as

f(x) = p(x) - (-1 lie, XEXj' j=O, 1, ... , k. (4)

In each subinterval Y" j= 1, 2, ..., k, f(x) intersects p(x) only once and
satisfies

I p(x) - f(x)1 :(; e. (5)

Let us examine that f E ('(X). For x E Yj , j = 1, 2, ... , k, it follows from (5)
that

f(x):(; p(x) + e:(; p(x) + eo:(; p(x) + u(x) - p(x) = u(x)

and

f(x) ~ p(x) - e~ p(x) - eo ~ p(x) + I(x) - p(x) = I(x).

And for x E X j , j even,

f(x) = p(x) - e:(; p(x):(; u(x)

and

f(x) = p(x) - e~ p(x) - e\ ~ p(x) + I(x) - p(x) = I(x).

The same conclusion is valid for x E Xj , j odd.
Since f - p alternates exactly k times, k < n, by the assumption of the

theorem, p is not a best aproximation to f from K. Hence there is a
function p* E K such that p* is a better approximation to f than p, i.e.,

We claim that

Ilf - p*11 < Ilf - pll =e.

1< p* < u.

(6)

(7)

In fact, it follows from (6) that f - e < p* < f + e. Hence for x E Xl' j even,
we havef(x)=p(x)-e. Whence

p*(x) <f(x) + e = p(x):(; u(x)

and

p*(x) > f(x) - e = p(x) - 2e ~ p(x) - e l

~ p(x) - (p(x) -/(x)) = I(x).

A similar argument is applicable to x E Xj , j odd.
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Further, for x E Yi , j = 1,..., k, we obtain that

p*(x) <f(x) + e:(: p(x) + 2e:(: p(x) + eo:(: p(x) + u(x) - p(x) = u(x)

and

p*(x) >((x) - e ~ p(x) - 2e ~ p(x) - eo ~ p(x) - (p(x) -/(x)) = I(x).

This proves that 1< p* < u and concludes the proof of the theorem.
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DEFINITION 7. K is said to have Property B I if n > 1 implies K = H,
and n = 1 and I(x) i -.X) (resp. u(x) i + Cf:j) imply the existence of two
distinct points XI' X 2 and a function Po E K satisfying

Po(x;) = I(:~)

The next main result is

(resp. u(x;)), i= 1,2. (8 )

THEOREM 2. K has Property C if and only if either K is an alternation
singleton or H is a Haar subspace and K has Property B l'

Proof Sufficiency. It is easy to see that if K is an alternation singleton
or K = H is a Haar subspace, then K has Property C. So we need only to
show that if H is a Haar subspace and K satisfies Property B1 for n = 1,
then K has Property C.

lf X + n X _ = 0, by Theorem A, Property C is valid.
On the other hand, X + n X_#- 0 means that one of the following three

cases occurs.

Case 1. X + 1 n X -I #- 0. This means f E K. A set of any two distinct
points provides an alternation once.

Case 2. X_ 1 nX+ 2 #-0. That implies I(x)i -oc. Let xoEX_1n
X +2' Then

p(xo) - f(xo) = Ilf - pll and (9)

where p E K is a best approximation to f Since H is a Haar subspace, it
follows from p(xo)=1(.\"0) and (8) that p = Po. Thus f - p alternates at
least once, since X oE X + and x I' X 2 E X _ .

Case 3. X + 1 n X -2 #- 0. A similar argument is valid for this case.

Necessity. Assume that K is not an alternation singleton. By
Theorem 1, H is a Haar subspace.

Let n = 1. The proof is given for I(w) i - Cf:j. A similar proof is valid for
u(x) i + 00. Since I(x) i - 00 and I is upper semicontinuous, there is a

64053 1-4
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function Po E K such that Po(x 1) = I(x 1) for some x l' Since K is not an
alternation singleton, Po(x) < u(x) for all x E X. Suppose on the contrary
that Po(x) 0;6 I(x) for any x 0;6 x I' Then the function

has the properties

XEX (10)

I/(x I) - Po(x 1)1 = III - Poll and I/(x) - PoC'")1 < III - Poll,

(11 )

Since x I E X _ I n X + 2' by Theorem A, Po is a best approximation to I from
K. On the other hand, I - Po has no alternation, a contradiction. This
concludes Property B I for n = 1.

Let n> 1. Suppose on the contrary that I(x) i= - C/J. By the proof of
Theorem 1 there is a function p* E K such that p*(x) < u(x) for all XE X.
Then there exists a function Po E K such that

Po(x) < u(x)

Po(x tl = I(x tl

for all XE X

for some x I E X

In fact, Po is a solution of the minimization problem

inf(po(x)-/(x))= inf inf(q(x)-/(x))
XEX qeKlxeX

in K I = {q E K: I ~ q ~ p*} and always exists. Without loss of generality
assume that XI satisfies that Po(x)0;6/(x) for all X<x l , otherwise we
replace x I by a point satisfying this condition. Then the function I defined
by (10) satisfies (11) and has Po as a best approximation. But I-po alter­
nates at most once, which contradicts Property C and n > 1. This proves
1= -00. Similarly, we must have u = +C/J.

THEOREM 3. K has Property C* if and only if either K is an alternation
singleton or H is a Haar subspace.

Proof It suffices to show that Property C* is equivalent to Property C.
Clearly, Property C implies Property C*. On the other hand, since
u > I implies that either IE K or X + n X _ = 0, Property C* implies
Property C.

THEOREM 4. K has Property C* if and only if either K is an alternation
singlton or H is a Haar subspace.

Proof Since Property C* implies Property C*, by Theorem 3, Property
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C* implies Property C. Conversely, the "if" portion of the theorem follows
directly from Theorem A.

III. THE LIMITS OF A CHEBYSHEV-TYPE THEORY­
CHARACTERIZATION AND UNIQUENESS

If follows immediately from Theorems 1 and 2 that

LEMMA 3. (a) Property C implies Property U.
(b) Property C implies Property U.

By Theorems 1, 2, and 3 and Lemma 3 we can easily obtain the
following three theorems.

THEOREM 5. K has Property C&U if and only if either K is an alter­
nation singleton or H is a Haar subspace.

THEOREM 6. K has Property C&U if and only if either K is an alter­
nation singleton or H is a Haar subspace and K has Property HI'

THEOREM 7. K has Property C&U if and only if either K is an alter­
nation singleton or H is a Haar subspace.

The next theorem, which characterizes Property C*&U, is somewhat
difficult. We begin with

DEFINITION 8. K has Property H2 if either 1= -00 (resp. U= +00) or
PI' pz E K and PI(XO ) = pz(xo) = I(xo) (resp. u(xo)) imply PI = P2'

EXAMPLE. If I = (~- (x - !)2)1/2, U = +00 and H = span {l, x}, it is easy
to see that K satisfies Property H2'

LEMMA 4. Property U implies Property H2 •

Proof If possible, suppose that K does not have Property H2 , and say
that pl(xo)=P2(xo)=/(xo) for some PI,P2EK, PI=FP2, and xoEX.
Denote d= Ilpl - P211 and define IE C(X) by

I(xo) = I(xo) - d,

I/(x) - Pi(x)1 < d, x =F X o, i = 1, 2.

Obviously both PI and P2 are best approximations to I from K by
definition. But this contradicts Property U. The lemma is established.
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THEOREM 8. K has Property C*&U if and only if either K is an alter­
nation singleton or H is a Haar subspace and K has Property B2 •

Proof (<=) if K is an alternation singleton, clearly the conclusion is
right. If H is a Haar subspaces, by Theorem A, K has Property C* and the
uniqueness is valid for those IE C(X) for which X + n X _ = 0. Assume
that IE C(X) has a best approximation p and X + n X _ i= 0, say
Xo E X + n X _. Then one of the following three cases occurs:

(1 l X oE X + I n X_I;

Case (1) means IE K and is trivial. Case (2 l means (9). Thus if p* E K is
also a best approximation to I, then

p*(xol - I(xo):S: III - pll

and

p*(xo)~ I(xo)·

By (9) we obtain p(xo) = p*(xo)= I(xo). By virtue of Property B2 we con­
clude p = p*, which shows that the best approximation p to I is unique. A
similar argument may establish the uniqueness of best approximation for
case (3).

( => ) If K is not an alternation singleton, by Theorem 4, H is a Haar
subspace. Also, by Lemma 4, K has Property B2 •

IV. THE LIMITS OF A CHEBYSHEV-TYPE THEORY-UNIQUENESS

For preparation for the proof of Theorem 9, we establish

LEMMA 5. If K is not a singleton, then Property B2 and Property Z
imply that H is a Haar subspace.

Proof Let PI and P2 be in K and PI i= P2· Then p = Hpi + P2) must
satisfy that I(x) < p(x) < u(x) for all x E X, because p(xo)= I(xo) and
p(xo) = u(xo) lead to PI(XO) = P2(XO) = I(xo) and PI(XO) = P2(XO) = u(xo),
respectively, contradicting Property B2 • If it is coupled with Property Z,
then by Lemma 2 we assert that H is a Haar subspace.

The first main theorem in this section is as follows.

THEOREM 9. K has Property U if and only if either K is a singleton or H
is a Haar subspace and K has Property B2 •
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Proof The "if" portion of the theorem follows directly from Theorem 8.
We proceed with the "only if" portion.

By Lemma 3-13 in [3, p. 87], Property U implies Property Z. Lemma 4
says that Property U implies Property B2 • Thus by Lemma 5, H is a Haar
subspace if K is not a singleton.

The last main theorem in this section is concerned with the equivalent
condition of Propety U. For this theorem we need to establish a lemma,
which is of independent interest.

LEMMA 6. Property U implies Property Z.

Proof Suppose on the contrary that there are PI' P2 E K with PI # P2
such that PI - P2 has n distinct zeros, say Xl' X 2,..., X no Without loss of
generality we assume that e=!llpI-P211<!inf{u(x)-/(x): XEX},
otherwise we replace PI and P2 by (1- td PI + t l P2 and (1 - t2)PI + t2P2'
respectively, with t l #t2 and It l -t21 small enough. Define gEC(X) such
that

and

Ilg- Pili = Ilg- P211 =e.

Such a function g must exist. In fact, (13) is equivalent to

(12)

(13 )

and P2 -e~ g~ P2 +e.

Thus it suffices to define g E C(X) satisfying /* ~ g ~ u*, where
/*=max{PI-e, P2-e, /+e} and u*=min{PI+e, P2+e, u-e}. But
/* ~ u* is, indeed, valid, because if follows from

max{PI' P2} -e~min{PI' P2} +e,

/+e~u-e and

max{PI' P2} -e~u-e,

/+ e ~ min {p I' P2} + e.
(14)

Since /* and u* are upper and lower semicontinuous, respectively, there
exists a function g E C(X) such that /* ~ g ~ u*. By uniqueness it follows
from (13) that neither PI nor P2 is a best approximation to g from K.
Therefore there must exist a function P in K such that P is a better
approximation to g than PI' i.e., IIg- pil < Ilg- pIli =e. According to (12)
we get that / < P < u. Write P;* = !(p + Pi), i= 1, 2. Whence

i= 1,2 (15)
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and pi-pi=!(pl-p2) also has n zeros Xl>X2"",Xn- Without loss of
generality we further assume that

M==.llpi-pill<min inf{u(x)-p;*(x),p;*(x)-l(x)} (16)
i~ 1,2 XE X

using the techniques as before.
Now we can use a similar argument, as used in the proof of Lemma 3~13

in [3] by Rice, where f(x) may be chosen so that fE C(X) because of (15)
and (16). Therefore both pi and pi are best approximations to f from K
This contradiction proves Property Z.

THEOREM 10. K has Property 0 if and only if either K is a singleton or
H is a Haar subspace.

Proof The "if" portion of the theorem is given by Theorem A. For the
"only if" portion we see from Lemma 6 that K has Property Z. If K is not a
singleton, Property Z as well as (15) implies that H is a Haar subspace by
Lemma 2.

V. SUMMARY

Theorems 1, 3, 4, 5, and 7 can be restated as follows.

THEOREM 11. The following statements are equivalent to each other:

(a) Either K is an alternation singleton or H is a Haar subspace;

(b) K has Property C;
(c) K has Property C*;
(d) K has Property C*;

(e) K has Property C&O;
(f) K has Property C*&O.

Theorems 2 and 6 can be restated as follows.

THEOREM 12. The following statement are equivalent to each other:

(a) Either K is an alternation singleton or H is a Haar subspace and K
has Property B 1 ;

(b) K has Property C;

(c) K has Property C&U.

From Theorems 1, 3, 4, 5, 7, and 10 we have
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THEOREM 13. If K is not a singleton, then the following statements are
equivalent to each other:

(a) H is a Haar subspace;

(b) K has Property C;
(c) K has Property C*;
(d) K has Property C*;

(e) K has Property U;
(f) K has Property C&U;
(g) K has Property C*&U.

From Theorems 8 and 9 we have

THEOREM 14. If K is not a singleton, then the following statements are
equivalent to each other:

(a) H is a Haar subspace and K has Property B2 ;

(b) K has Property U;

(c) K has Property C*&U.
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